The maximum-margin approach to learning text classifiers: methods theory, and algorithms

نویسنده

  • Thorsten Joachims
چکیده

Diese Dissertation entwickelt und erforscht einen neuen Ansatz zum Lernen von Textklassifikationsregeln aus Beispielen. Der Ansatz stützt sich auf die Einsicht, dass bei der Textklassifikation nicht die Anzahl der Attribute die Schwierigkeit einer Lernaufgabe bestimmt, sondern dass dimensionsunahängige Komplexitätsmaße notwendig sind. Die Dissertation zeigt den Zusammenhang dieser Maße mit den statistischen Eigenschaften von Text, deren Umsetzung in effektiven und praktikablen Methoden zur Textklassifikation und ihre Implementierung in effizienten Algorithmen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Learning of Maximum p-Norm Margin Classifiers with Bias

We propose a new online learning algorithm which provably approximates maximum margin classifiers with bias, where the margin is defined in terms of p-norm distance. Although learning of linear classifiers with bias can be reduced to learning of those without bias, the known reduction might lose the margin and slow down the convergence of online learning algorithms. Our algorithm, unlike previo...

متن کامل

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

Computational Learning Theory Lecture 7: Convex Optimisation and Maximising the Margin

This lecture begins our exposition of the Support Vector Machines (SVM) algorithm. This is a procedure for finding linear classifiers that has both solid mathematical foundations and numerous practical applications, including bioinformatics, finance, text mining, face recognition, and image processing. Initially we consider the case in which the input data admits a consisent linear classifer an...

متن کامل

Optimization for Sparse and Accurate Classifiers

OF THE DISSERTATION Optimization for sparse and accurate classifiers by Noam Goldberg Dissertation Director: Professor Jonathan Eckstein Classification and supervised learning problems in general aim to choose a function that best describes a relation between a set of observed attributes and their corresponding outputs. We focus on binary classification, where the output is a binary response va...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001